Soil moisture plays a critical role in hydrological processes, land-atmosphere interactions and climate variability. It can limit vegetation growth as well as infiltration of rainfall and therefore very important for agriculture sector and food protection. Recently, due to the increased damage from drought caused by climate change, there is a frequent occurrence of shortage of agricultural water, making it difficult to supply and manage stable agricultural water. Efficient water management is necessary to reduce drought damage, and soil moisture management is important in case of upland crops. In this study, soil moisture was calculated based on the water balance model, and the suitability of soil moisture data was verified through the application. The regional soil moisture was calculated based on the meteorological data collected by the meteorological station, and applied the Runs theory. We analyzed the spatiotemporal variability of soil moisture and drought impacts, and analyzed the correlation between actual drought impacts and drought damage through correlation analysis of Standardized Precipitation Index (SPI). The soil moisture steadily decreased and increased until the rainy season, while the drought size steadily increased and decreased until the rainy season. The regional magnitude of the drought was large in Gyeonggi-do and Gyeongsang-do, and in winter, severe drought occurred in areas of Gangwon-do. As a result of comparative analysis with actual drought events, it was confirmed that there is a high correlation with SPI by each time scale drought events with a correlation coefficient.
Atmospheric Dispersion of Particulate Matters (PM10 and PM2.5) and Ammonia Emitted from Livestock Farms Using AERMOD
The particulate matters (PM10 and PM2.5) and ammonia emitted from livestock farms as dispersed to urban and residential areas can increase the public’s concern over the health problem, social conflicts, and air quality. Understanding the atmospheric dispersion of such matters is important to prevent the problems for the regulatory purposes. In this study, AERMOD modeling was performed to predict the dispersion of livestock particulate matters and ammonia in Gwangju metropolitan city and five surrounding cities. The five cities were divided into 40 sub-zones to model the area-based emissions which varied with the number of livestock farms, species and growth stages of the animals. As a result, the concentrations of PM10, PM2.5 and ammonia resulted from livestock farms located in the surrounding cities were 2.00 μg m-3, 0.30 μg m-3 and 0.04 ppm in the southwestern part of Gwangju based on the average concentration of 1 hour. These values accounted for 0.7% of PM10 concentration, 0.5% of PM2.5 concentration, and 0.4% of the ammonia concentration in Gwangju, contributing to a small amount of air pollution compared to other sources. As preventive measures, the plantation was applied to high emission source areas to reduce particulate matters and ammonia emissions by 35% and 31%, respectively, and resulted in decrease of the area of influence by 57% for particulate matters and 59% for ammonia.
Improvement of Quantitative Condition Assessment Criteria for Reservoir Embankment Safety Inspection Considering Characteristics of Small Reservoirs in Korea
Improvement of Quantitative Condition Assessment Criteria for Reservoir Embankment Safety Inspection Considering Characteristics of Small Reservoirs in Korea
The physical condition assessment criteria of fill dam safety inspection are now weakly regulated and inappropriate for small agricultural reservoirs since these criteria have fundamental backgrounds suitable for large-scale dams. This study proposes the degree (critical values) of defects for the quantitative condition assessment of the embankment in order to prepare the condition assessment criteria for a small reservoir with a storage capacity of less than one (1) million cubic meters. The critical values of defects were calculated by applying the method that considers the size ratios based on the dimensional data of reservoirs, and the method of statistical analysis on the measured values of the defect degree which extracted from comprehensive annual reports on reservoir safety inspection. In comparison with the current criteria, the newly proposed critical values for each condition assessment item of the reservoir embankment are presented in paragraphs 4 and 6 of the conclusion. In addition, this study presents a method of displaying geometric figures to clarify the rating classification for condition assessment items with the two defect indicators.
Analyzing Drift Patterns of Spray Booms with Different Nozzle Types and Working Pressures in Wind Tunnel
With rising concerns about pesticide spray drifts, this study analyzed the drift patterns of two typically-used nozzles, XR nozzle and AI nozzle, concerning their working pressures and wind speeds by wind tunnel experiments. AI nozzle showed low drift potential with larger droplet sizes compared to XR nozzle. Airborne and deposition drifts of XR nozzle were two times higher than those of AI nozzle under high wind speeds (≥2 m s-1). In all cases, higher working pressures decreased the droplet sizes, thereby increasing the airborne and deposition drifts. Higher wind speeds also resulted in more airborne drifts, while ground deposition was increased under lower wind speeds. These effects of working pressures and wind speeds on the airborne and deposition drifts were observed at leeward distances less than 4 m from the nozzles. However, the airborne and deposition drifts were barely affected by the working pressures and wind speeds at leeward distances more than 11 m. The measurements were fitted to regression models of the drift curve with acceptable R2 values greater than 0.8, demonstrating that further studies will be useful to settle domestic issues of spray drifts.
Analysis of Flood Control Capacity of Agricultural Reservoir Based on SSP Climate Change Scenario
김지혜 Kim¸ Jihye , 곽지혜 Kwak¸ Jihye , 황순호 Hwang¸ Soonho , 전상민 Jun¸ Sang Min , 이성학 Lee¸ Sunghack , 이재남 Lee¸ Jae Nam , 강문성 Kang¸ Moon Seong
The objective of this study was to evaluate the flood control capacity of the agricultural reservoir based on state-of-the-art climate change scenario - SSP (Shared Socioeconomic Pathways). 18 agricultural reservoirs were selected as the study sites, and future rainfall data based on SSP scenario provided by CMIP6 (Coupled Model Intercomparison Project 6) was applied to analyze the impact of climate change. The frequency analysis module, the rainfallrunoff module, the reservoir operation module, and their linkage system were built and applied to simulate probable rainfall, maximum inflow, maximum outflow, and maximum water level of the reservoirs. And the maximum values were compared with the design values, such as design flood of reservoirs, design flood of direct downstream, and top of dam elevation, respectively. According to whether or not the maximum values exceed each design value, cases were divided into eight categories; I-O-H, I-O, I-H, I, O-H, O, H, X. Probable rainfall (200-yr frequency, 12-h duration) for observed data (1973∼2020) was a maximum of 445.2 mm and increased to 619.1∼1,359.7 mm in the future (2011∼2100). For the present, 61.1% of the reservoirs corresponded to I-O, which means the reservoirs have sufficient capacity to discharge large inflow; however, there is a risk of overflowing downstream due to excessive outflow. For the future, six reservoirs (Idong, Baekgok, Yedang, Tapjung, Naju, Jangsung) were changed from I-O to I-O-H, which means inflow increases beyond the discharge capacity due to climate change, and there is a risk of collapse due to dam overflow.
Wind Tunnel Evaluation of Aerodynamic Coefficients of Thuja occidentalis and Mesh Net
Windbreak forests, which have a windproof effect against strong winds, are known to be effective in reducing the spread of odors and dust emitted from livestock farms. The effect of reducing the spread of odors and dust can be estimated through numerical models such as computational fluid dynamics, which require aerodynamic coefficients of the windbreaks for accurate prediction of their performance. In this study, we aimed to evaluate the aerodynamic coefficients, Co, C1, C2, and α, of two windbreaks, Thuja occidentalis and a mesh net, through wind tunnel experiments. The aerodynamic coefficients were derived by the relation between the incoming wind speed and the pressure loss due to the windbreaks which was measured by differential pressure sensors. In order to estimate the change in the aerodynamic coefficient concerning various leaf density, the experiments were conducted repeatedly by removing the leaves gradually in various stages. The results showed that the power law regression model more suitable for coefficient evaluation compared to the Darcy-Forchheimer model.
Comparison of Generated Loads by Hydroponics of Strawberry, Tomato, and Paprika in Gyeongsangnam-do
The objective of this study was to analyze the waste nutrient generation loads from hydroponics for three major crops in Gyeongsangnam-do. Study hydroponic farms were selected for the three major crops such as paprika, strawberry, tomato based on the agricultural statistics data and field investigation. The flow amount and water quality for inflow and outflow of study hydroponic farms were monitored and analyzed on a monthly basis. Monitored samples were analyzed in terms of DO, BOD, T -N, T-P, SS, and EC. The generated load of BOD, T -N, and T-P were calculated from the monitored flow and water quality. The monitoring results showed that the drainage ratio for the circular hydroponic farm was lower than the non-circular hydroponic farm because the outflow from the circular hydroponics were much lower than that from the non-circular. The generated load calculation results showed that the BOD tended to have a smaller value than the TMDLs guideline for land, while T-N and T-P showed higher value than that from the TMDLs guideline. In order to effectively manage the pollutant load discharged from the hydroponics farming complex, it is necessary to manage the non-circulating hydroponics farm. To improve water quality, it is necessary to gradually expand the circulating hydroponics farm through policy and economic support.
Quality Control on Water-level Data in Agricultural Reservoirs Considering Filtering Methods
Agricultural reservoirs are important facilities for storing or managing water for the purpose of securing agricultural water, creating and expanding agricultural production bases, and using them to increase agricultural production. In particular, the Korea Rural Community Corporation (KRC) manages agricultural reservoirs scattered across the country, and officially recognizes and distributes hydrological data to increase their public utilization and aims to improve the value of water resources. Data on the water level of agricultural reservoirs are important. However, errors such as missing values and outliners limit utilization of the data in various fields of research and industry. Therefore, water quality data measures should be devised to increase reliability. this study categorized different error types and looked at automatic correction methods to enhance the reliability of the vast hydrological data. In addition, the water level data corrected from errors were compared to the reference hydrologic data through expert judgment in accordance with the quality control procedure, and the most appropriate measures were verified. As KRC manages more agricultural reservoirs than any other institution, the proposed method of efficient and automatic water level data correction in this study is expected to increase the availability and reliability of the hydrological data.
On the Linkage Between Irrigation Facilities and Rice Production Under Drought Events
Drought is a disaster that causes prolonged and wide scale damage. Recently, the severity and frequency of drought occurrences, and drought damage have been increased significantly due to climate change. As a result, a quantitative study of drought factors is needed to better understand and prevent future droughts. In the case of agricultural drought, several existing studies examine the economic damage caused by droughts and their causes, but these studies are not well suited to estimating crop-oriented agricultural drought damage and the factors that absolutely affect agricultural drought. This study determines which factors most affect agricultural drought. It examines meteorological factors and those related to agricultural water supplied by irrigation facilities. Rice paddy production per unit area is lower than the average from the last two years where agricultural drought occurred. We compare the relative frequency of agricultural drought impacts with irrigation facilities, effective reservoir storage, the number of water supply facilities, and the meteorological drought index such as Standardized Precipitation Index (SPI). To identify factors that affect agricultural drought, we correlate rice paddy production anomalies with irrigation water supply for the past two years. There was a high positive correlation between rice paddy production and irrigation water usage, and there was a low or moderate negative correlation between rice paddy production anomalies compared to the average of the past two years and SPI. As a result, agricultural water supply by irrigation facilities was judged to be more influential than meteorological factors in rice paddy production. This study is expected to help local governments establish policies related to agricultural drought response.